Network-centric performance analysis of runtime application migration in mobile cloud computing

نویسندگان

  • Ejaz Ahmed
  • Adnan Akhunzada
  • Md Whaiduzzaman
  • Abdullah Gani
  • Siti Hafizah Ab Hamid
  • Rajkumar Buyya
چکیده

Mobile Cloud Computing alleviates the limitations of resource-constrained mobile devices by leveraging the cloud resources. Currently, software-level solutions, also known as computational offloading, migrate the cloud-based mobile applications at runtime to the cloud datacenter to optimize the application execution time. However, the application execution frameworks mainly focus on migrating the application without considering the various critical network-centric parameters, such as traffic load and mobility speed, in application migration decision. In this paper, we analyze the effect of network-centric parameters on the application migration process. The performance of the migration process is analyzed by simulating the migration process in OMNeT++. The effects of various parameters, such as number of users in a WLAN, size of a file containing the application and its running states, traffic load on the wireless access point, message length, number of hops to the cloud, and mobility speed, are studied on the application performance metrics such as application migration time and packet drop ratio. Our analysis shows that the application and its running states migration time is affected by the changes in the network conditions. Based on our research findings, we recommend application execution framework designers to incorporate the network-centric parameters along with other parameters in the decision process of the application migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TASA: A New Task Scheduling Algorithm in Cloud Computing

Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. It merges a lot of physical resources and offers them to users as services according to service level agreement. Therefore, resource management alongside with task scheduling has direct influence on cloud networks’ performance and efficiency. Presenting a proper scheduling ...

متن کامل

A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment

With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...

متن کامل

DoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation

Security and privacy are very important challenges for outsourced private data over cloud storages. By taking Attribute-Based Encryption (ABE) for Access Control (AC) purpose we use fine-grained AC over cloud storage. In this paper, we extend previous Ciphertext Policy ABE (CP-ABE) schemes especially for mobile and resource-constrained devices in a cloud computing environment in two aspects, a ...

متن کامل

Reduction of Energy Consumption in Mobile Cloud Computing by ‎Classification of Demands and Executing in Different Data Centers

 In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...

متن کامل

Joint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks

Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Simulation Modelling Practice and Theory

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2015